

IUPITAL® ACETAL COPOLYMER ENGINEERING THERMOPLASTIC

IUPITAL® IS A REGISTRED TRADEMARK OF MITSUBISHI ENGINEERING PLASTICS CORPORATION

IUPITAL® FG20-05

IUPITAL® FG20-05 is a 5% glass fibre reinforced medium viscosity (medium melt flow) grade of lupital® Polyacetal which is suited for general purpose injection moulding applications requiring exceptional rigidity, heat and creep resistance and high chemical resistance.

	CONDITIONS	<u>UNITS</u>	TYPICAL VALUES	<u>TESTING</u> METHODS
1. Mechanical Properties				
Notched Izod Impact Strength	12.7 x 3.2 mm	J/m	60	ASTM D256
Tensile Strength	12.7 x 3.2 mm @ 5.0 mm/min	MPa	60	ASTM D638
Elongation to Fail	12.7 x 3.2 mm @ 5.0 mm/min	%	20	ASTM D638
Flexural Strength	12.7 x 3.2 mm @1.3 mm/min	MPa	85	ASTM D790
Flexural Modulus	12.7 x3.2 mm @ 1.3 mm/min	MPa	2400	ASTM D790
2. Thermal Properties				
Melting Temperature		°C	165	DSC
4. Physical Properties				
Melt Flow Rate	190°C, 2.16 kg	g/10 min	9	ASTM D1238
Specific Gravity		-	1.43	ASTM D792
Rockwell Hardness		R	116	ASTM D785
UL Flammability	0.8 mm	Rating	HB	UL 94
Water Absorption	24 hours	%	0.2	ASTM D570
Reinforcement Level		%	5	n/a

(+) 18816996168 Ponciplastics.com

TYPICAL PROCESSING CONDITIONS

IUPITAL® FG20-05

The following typical guidelines are offered as initial processing conditions for IUPITAL® FG20-05 In practice, processing parameters may need to be varied to give commercially acceptable performance in conjunction with optimum physical properties. For specific technical advice on part design or processing conditions, contact the Marplex Technical Service Department.

Temperature of pellet bed in dehumidifying drier 80 - 90 °C

Minimum drying time at desired pellet bed temp 2 - 3 hours

Mould temperature 50 - 90 °C

Nozzle temperature Do not exceed stock

temperature

Stock temperature 190 - 210 °C

Cylinder temperatures Rear 165 - 185 °C

Middle 175 - 195 °C

Front 185 - 205 °C

Fill speed Medium - Fast

Screw speed 40 - 60 rpm

Screw back pressure 0.1 - 0.5 MPa

Injection pressure 60 - 130 MPa

Clamp pressure 3 - 5 kN/cm²

Comment(s):

- 1 Cleanliness of the dryer, machine hopper and machine screw/barrel/nozzle assembly are essential for processing lupital® Polyacetal and producing contamination free moulded components.
- 2 lupital® Polyacetal is not compatible during moulding with other polymers.
- It is suggested that the pre-drying, moulding die and material temperatures are manually confirmed using a hand held temperature measuring device.
- 4 Minimise the screw recharge speed and screw backpressure to limit breakage of the glass reinforcement.

Conversions: 1 MPa = 145 psi

= 10.2 kg/cm²

= 10 bar

 $^{\circ}$ C = 5($^{\circ}$ F-32)/9

 $1 \text{ kN/cm}^2 = 0.65 \text{ ton/in}^2$